lunes, 25 de abril de 2011

CIENCIAS SOCIALES

   tabla de los elementos

De Wikipedia, la enciclopedia libre
La tabla periódica de los elementos.
La tabla periódica de los elementos clasifichbfhgsfbdvahsfVBJKBVAFANBhJVNFK y distribuye los distintos elementos químicos, conforme a sus propiedades y características.
Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev, fue diseñada por Alfred Werner.

Contenido

[ocultar]

[editar] Historia

La historia de la tabla periódica está íntimamente relacionada con varios aspectos del desarrollo de la química y la física:
  • El estudio de las propiedades comunes y la clasificación de los elementos
  • Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.

[editar] El descubrimiento de los elementos

Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino–térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.

[editar] La noción de elemento y las propiedades periódicas

Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos.
La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos.
A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.
El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.

[editar] Los pesos atómicos

A principios del siglo XIX, John Dalton (17661844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (17431794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas).
Dalton empleó los conocimientos sobre proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori.
Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de oxígeno, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.

[editar] Metales, no metales, metaloides y metales de transición

La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.

[editar] Tríadas de Döbereiner

Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner (17801849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio).
Tríadas de Döbereiner
Litio LiCl
LiOH
Calcio CaCl2
CaSO4
Azufre H2S
SO2
Sodio NaCl
NaOH
Estroncio SrCl2
SrSO4
Selenio H2Se
SeO2
Potasio KCl
KOH
Bario BaCl2
BaSO4
Telurio H2Te
TeO2
A estos grupos de tres elementos se les denominó tríadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.
Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.
En su clasificación de las tríadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la tríada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de tríadas.

[editar] Chancourtois

En 1864, Chancourtois construyó una hélice de papel, en la que estaban ordenados por pesos atómicos (masa atómica) los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.

[editar] Ley de las octavas de Newlands

En 1864, el químico inglés John Alexander Reina Newlands comunicó al Royal College of Chemistry (Real Colegio de Química) su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.
Ley de las octavas de Newlands
1 2 3 4 5 6 7
Li
6,9

Na
23,0

K
39,0
Be
9,0

Mg
24,3

Ca
40,0
B
10,8

Al
27,0


C
12,0

Si
28,1


N
14,0

P
31,0


O
16,0

S
32,1


F
19,0

Cl
35,5


Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.
El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.
Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

[editar] Tabla periódica de Mendeléyev

Artículo principal: Tabla periódica de Mendeléyev
En 1869, el ruso Dmitri Ivánovich Mendeléyev publicó su primera Tabla Periódica en Alemania. Un año después lo hizo Julius Lothar Meyer, que basó su clasificación periódica en la periodicidad de los volúmenes atómicos en función de la masa atómica de los elementos.
Por ésta fecha ya eran conocidos 63 elementos de los 90 que existen en la naturaleza. La clasificación la llevaron a cabo los dos químicos de acuerdo con los criterios siguientes:
  • Colocaron los elementos por orden creciente de sus masas atómicas.
  • Situaron en el mismo grupo elementos que tenían propiedades comunes como la valencia.
Tabla de Mendeléyev publicada en 1872. En ella deja casillas libres para elementos por descubrir.
La primera clasificación periódica de Mendeléyev no tuvo buena acogida al principio. Después de varias modificaciones publicó en el año 1872 una nueva Tabla Periódica constituida por ocho columnas desdobladas en dos grupos cada una, que al cabo de los años se llamaron familia A y B.
En su nueva tabla consigna las fórmulas generales de los hidruros y óxidos de cada grupo y por tanto, implícitamente, las valencias de esos elementos.
Esta tabla fue completada a finales del siglo XIX con un grupo más, el grupo cero, constituido por los gas noble descubiertos durante esos años en el aire. El químico ruso no aceptó en principio tal descubrimiento, ya que esos elementos no tenían cabida en su tabla. Pero cuando, debido a su inactividad química (valencia cero), se les asignó el grupo cero, la Tabla Periódica quedó más completa.
El gran mérito de Mendeléyev consistió en pronosticar la existencia de elementos. Dejó casillas vacías para situar en ellas los elementos cuyo descubrimiento se realizaría años después. Incluso pronosticó las propiedades de algunos de ellos: el galio (Ga), al que llamó eka–aluminio por estar situado debajo del aluminio; el germanio (Ge), al que llamó eka–sicilio; el escandio (Sc); y el tecnecio (Tc), que, aislado químicamente a partir de restos de un sincrotrón en 1937, se convirtió en el primer elemento producido de forma predominantemente artificial.

[editar] La noción de número atómico y la mecánica cuántica

La tabla periódica de Mendeléyev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio–yodo, argón–potasio y cobalto–níquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes.
Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867–1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo.
La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.
Tabla periódica de los elementos[1]
Grupo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I A II A III B IV B V B VI B VII B VIII B VIII B VIII B I B II B III A IV A V A VI A VII A VIII A
Periodo

















1 1
H
















2
He
2 3
Li
4
Be










5
B
6
C
7
N
8
O
9
F
10
Ne
3 11
Na
12
Mg










13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
4 19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
5 37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
6 55
Cs
56
Ba
* 72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
7 87
Fr
88
Ra
** 104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Cn
113
Uut
114
Uuq
115
Uup
116
Uuh
117
Uus
118
Uuo
Lantánidos * 57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu

Actínidos ** 89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr


Alcalinos Alcalinotérreos Lantánidos Actínidos Metales de transición
Metales del bloque p Metaloides No metales Halógenos Gases nobles y Transactínidos
Para una tabla más detallada, puedes consultar: Anexo:Tabla periódica

[editar] Clasificación

[editar] Grupos

Artículo principal: Grupo de la tabla periódica
A las columnas verticales de la tabla periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia atómica, y por ello, tienen características o propiedades similares entre sí. Por ejemplo, los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son todos extremadamente no reactivos.
Numerados de izquierda a derecha utilizando números arábigos, según la última recomendación de la IUPAC (y entre paréntesis según la antigua propuesta de la IUPAC) de 1988[2] , los grupos de la tabla periódica son:
Grupo 1 (I A): los metales alcalinos
Grupo 2 (II A): los metales alcalinotérreos
Grupo 3 (III B): Familia del Escandio
Grupo 4 (IV B): Familia del Titanio
Grupo 5 (V B): Familia del Vanadio
Grupo 6 (VI B): Familia del Cromo
Grupo 7 (VII B): Familia del Manganeso
Grupo 8 (VIII B): Familia del Hierro
Grupo 9 (VIII B): Familia del Cobalto
Grupo 10 (VIII B): Familia del Níquel
Grupo 11 (I B): Familia del Cobre
Grupo 12 (II B): Familia del Zinc
Grupo 13 (III A): los térreos
Grupo 14 (IV A): los carbonoideos
Grupo 15 (V A): los nitrogenoideos
Grupo 16 (VI A): los calcógenos o anfígenos
Grupo 17 (VII A): los halógenos
Grupo 18 (VIII A): los gases nobles

[editar] Períodos

Las filas horizontales de la tabla periódica son llamadas períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca según su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio; ambos tienen sólo el orbital 1s.
La tabla periódica consta de 7 períodos:
La tabla también está dividida en cuatro grupos, s, p, d, f, que están ubicados en el orden sdp, de izquierda a derecha, y f lantánidos y actínidos. Esto depende de la letra en terminación de los elementos de este grupo, según el principio de Aufbau.

[editar] Bloques o regiones

Artículo principal: Bloque de la tabla periódica
Tabla periódica dividida en bloques.
La tabla periódica se puede también dividir en bloques de elementos según el orbital que estén ocupando los electrones más externos.
Los bloques o regiones se denominan según la letra que hace referencia al orbital más externo: s, p, d y f. Podría haber más elementos que llenarían otros orbitales, pero no se han sintetizado o descubierto; en este caso se continúa con el orden alfabético para nombrarlos.

[editar] Otras formas de representar la tabla periódica

  • Varias formas (en espiral, en 3D) [1];
  • 1951. Forma en espiral, [2] ;
  • 1960. Forma en espiral, profesor Theodor Benfey[3];
  • 1995. Forma en espiral-fractal, Melinda E Green *[4];
  • 2004, noviembre. Forma en espiral sobre dibujo de galaxia, Philip J. Stewart [5];

[editar] Véase también

[editar] Referencias

[editar] Bibliografía

  • AGAFOSHIN, N.P., Ley periódica y sistema periódico de los elementos de Mendeleiev Madrid Editorial Reverté, 1977, 200 p.
  • BENSAUDE-VICENT, B. D. Mendeleiev: El sistema periódico de los elementos, Mundo científico, (1984), 42, 184-189.
  • MUÑOZ, R. y BERTOMEU SANCHEZ, J.R.La historia de la ciencia en los libros de texto: la(s) hipótesis de Avogadro, Enseñanza de las ciencias (2003), 21 (1), 147-161. Texto completo
  • ROCKE, A.J. 1984 Chemical Atomism in the Nineteenth Century. From Dalton to Cannizzaro. Ohio. Ohio State University Press, 1984.
  • ROMÁN POLO, P: El profeta del orden químico: Mendeléiev. Madrid: Nivola, 2002, 190 p
  • SCERRI, E.R., "Evolución del sistema periódico" Investigación y Ciencia (1998), 266, p. 54-59.
  • SCERRI, E.R., The Periodic Table: Its Story and Its Significance, Oxford, University Pres, 2006, 400 p.
  • STRATHERN, PAUL (2000) , El sueño de Mendeléiev, de la alquimia a la química, Madrid : Siglo XXI de España Editores, 288 p.
De Wikipedia, la enciclopedia libre
Esquema del Sistema Solar que incluye los planetas y planetas enanos. Los tamaños se encuentran a escala, las distancias entre los planetas y la ubicación no, debido a que una reproducción a escala es imposible por las distancias entre sí.
Sistema Solar y sus planetas orbitando alrededor del sol.
El Sistema Solar es un sistema planetario de la Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión. Según las últimas estimaciones, el Sistema Solar se encuentra a unos 28 mil años-luz del centro de la Vía Láctea.[1]
Está formado por una única estrella llamada Sol, que da nombre a este Sistema, más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea y Ceres), asteroides, satélites naturales, cometas... así como el espacio interplanetario comprendido entre ellos.

Contenido

[ocultar]

[editar] Características generales

El Sol.
Planetas del Sistema Solar (tamaño a escala).
Los planetas y los asteroides orbitan alrededor del Sol, en la misma dirección siguiendo órbitas elípticas en sentido antihorario si se observa desde encima del polo norte del Sol. El plano aproximado en el que giran todos estos se denomina eclíptica. Algunos objetos orbitan con un grado de inclinación considerable, como Plutón con una inclinación con respecto al eje de la eclíptica de 17º, así como una parte importante de los objetos del cinturón de Kuiper. Según sus características, y avanzando del interior al exterior, los cuerpos que forman el Sistema Solar se clasifican en:
  • Sol. Una estrella de tipo espectral G2 que contiene más del 99% de la masa del sistema. Con un diámetro de 1.400.000 km, se compone, de un 75% de hidrógeno, un 20% de helio y el 5% de oxígeno, carbono, hierro y otros elementos.
  • Planetas. Divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
En el año 2006, una convención de astronomía en Europa declaró a Plutón como planeta enano porque no reúne las características necesarias para ser llamado planeta.
El espacio interplanetario en torno al Sol contiene material disperso proveniente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas formando un plasma que es expulsado por el Sol en el viento solar. El límite exterior del Sistema Solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15.000 millones de kilómetros del Sol).
Los diferentes sistemas planetarios observados alrededor de otras estrellas parecen marcadamente diferentes al Sistema Solar, si bien existen problemas observacionales para detectar la presencia de planetas de baja masa en otras estrellas. Por lo tanto, no parece posible determinar hasta qué punto el Sistema Solar es característico o atípico entre los sistemas planetarios del Universo.

[editar] Estructura del Sistema Solar

Arriba a la izquierda: 1) Sistema Solar interior: desde el Sol hasta el Cinturón de asteroides. 2) A la derecha: Sistema Solar exterior: desde Júpiter hasta el Cinturón de Kuiper. 3) Abajo a la derecha: la órbita del planeta menor Sedna en comparación con la imagen de la izquierda, la Nube de Oort, límite exterior del Sistema Solar.
Las órbitas de los planetas mayores se encuentran ordenadas a distancias del Sol crecientes de modo que la distancia de cada planeta es aproximadamente el doble que la del planeta inmediatamente anterior. Esta relación viene expresada matemáticamente a través de la ley de Titius-Bode, una fórmula que resume la posición de los semiejes mayores de los planetas en Unidades Astronómicas. En su forma más simple se escribe:
a= 0,4 + 0,3\times k\,\!     donde k \,\! = 0, 1, 2, 4, 8, 16, 32, 64, 128.
(Aunque puede llegar a ser complicada)
En esta formulación la órbita de Mercurio se corresponde con (k=0) y semieje mayor 0,4 UA, y la órbita de Marte (k=4) se encuentra en 1,6 UA. En realidad las órbitas se encuentran en 0,38 y 1,52 UA.Ceres, el mayor asteroide, se encuentra en la posición k=8. Esta ley no se ajusta a todos los planetas (Neptuno está mucho más cerca de lo que se predice por esta ley). Por el momento no hay ninguna explicación de la ley de Titius-Bode y muchos científicos consideran que se trata tan sólo de una coincidencia.

[editar] La dimensión astronómica de las distancias en el espacio

Para tener una noción de la dimensión astronómica de las distancias en el espacio, es interesante hacer un modelo a escala que permita tener una percepción más clara del mismo. Imagínese un modelo reducido en el que el Sol esté representado por una pelota de fútbol (de 220 mm de diámetro). A esa escala, la Tierra estaría a 23,6 m de distancia y sería una esfera con apenas 2 mm de diámetro (la Luna estaría a unos 5 cm de la tierra y tendría un diámetro de unos 0,5 mm) . Júpiter y Saturno serían bolitas con cerca de 2 cm de diámetro, a 123 y a 226 m del Sol respectivamente. Plutón estaría a 931 m del Sol, con cerca de 0,3 mm de diámetro. En cuanto la estrella más próxima (Próxima Centauri) estaría a 6.332 km del Sol, y la estrella Sirio a 13.150 km.
Si se tardase 1 h y cuarto en ir de la Tierra a la Luna (a unos 257.000 km/h), se tardaría unas 3 semanas (terrestres) en ir de la Tierra al Sol, unos 3 meses en ir a Júpiter, 7 meses a Saturno y unos 2 años y medio en llegar a Plutón y dejar nuestro Sistema Solar. A partir de ahí, a esa velocidad, tendríamos que esperar unos 17.600 años hasta llegar a la estrella más próxima, y 35.000 años hasta llegar a Sirio.
Una escala comparativa más exacta puede ser si comparamos el Sol con un disco compacto de 12 cm de diámetro. A esta escala, la Tierra tendría poco más de medio milímetro de diámetro (0,55 mm). El Sol estaría a 6,44 metros. El diámetro de la estrella más grande del Universo conocido, VY Canis Majoris, sería de 264 metros (imaginemos esa enorme estrella de casi tres manzanas de casas de tamaño comparado con nuestra estrella de 12 cm). La órbita externa de Eris se alejaría a 625.48 metros del sol. Allí nos espera un gran vacío hasta la estrella más cercana ,Proxima Centauri, a 1645,6 Km de distancia. A partir de allí las distancias galácticas exceden el tamaño de la Tierra (aún hablando en la misma escala). Con nuestro Sol del tamaño de un Disco Compacto, el centro de la galaxia estaría a casi 11 millones de kilómetros y el diámetro de la Via Láctea sería de casi 39 millones de kilómetros. Un enorme vacío nos espera porque la galaxia Andrómeda estaría a 1028 millones de kilómetros, casi la distancia al Sol de Saturno.

[editar] Objetos principales del Sistema Solar

Sistema Solar
El SolMercurioVenusLa LunaTierraPhobos y DeimosMarteCeresCinturón de asteroidesJúpiterSatélites de JúpiterSaturnoSatélites de SaturnoUranoSatélites de UranoSatélites de NeptunoNeptunoSatélites de PlutónPlutónSatélites de HaumeaHaumeaMakemakeCinturón de KuiperDisnomiaErisDisco dispersoNube de Oort Solar System XXX.png
Planetas y enanos Sol - Mercurio - Venus - Tierra - Marte - Ceres - Júpiter - Saturno - Urano - Neptuno - Plutón - Haumea -Makemake - Eris
Satélite natural Terrestre - Marcianas - Asteroidales - Jovianas - Saturnianas - Uranianas - Neptunianas - Plutonianas - Haumeanas - Eridiana
12 Planetas y planetoides . Propuesta del año 2006 de reconocer 12 planetas, no aceptada por la IAU.
El Sol.
Planetas con corteza sólida.
Planetas de composición gaseosa.

[editar] Estrella central

El Sol es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es la más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años. El Sol, junto con la Tierra y todos los cuerpos celestes que orbitan a su alrededor, forman el Sistema Solar.
A pesar de ser una estrella mediana, es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Por una extraña coincidencia, la combinación de tamaños y distancias del Sol y la Luna respecto de la tierra son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).

[editar] Planetas

El 24 de agosto de 2006, en Praga, en la XXVI Asamblea General la Unión Astronómica Internacional (UAI), se excluyó a Plutón como planeta del Sistema Solar. Tras una larga controversia sobre esta resolución, se tomó la decisión por unanimidad. Con esto se reconoce el error de haber otorgado la categoría de planeta a Plutón en 1930, año de su descubrimiento. Desde ese día el Sistema Solar queda compuesto por 8 planetas.
Los 8 planetas que integran el Sistema Solar, de acuerdo con su cercanía al Sol, son: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Y estos planetas son astros que giran de manera circular formando órbitas alrededor del Sol, tienen suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuman una forma en equilibrio hidrostático (prácticamente esférica) y han limpiado la vecindad de su órbita de planetesimales.
A Júpiter, Saturno, Urano y Neptuno los científicos los han denominado planetas gaseosos por contener en sus atmósferas gases como el helio, el hidrógeno y el metano, sin saber a ciencia cierta la estructura de su superficie.

[editar] Características principales de los planetas del Sistema Solar

* Ver Tierra para los valores absolutos.
Planeta Diámetro
ecuatorial
Masa Radio
orbital (UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites naturales Imagen
Mercurio 0,382 0,06 0,38 0,241 58,6 0 Mercury in color - Prockter07 centered.jpg
Venus 0,949 0,82 0,72 0,615 243 0 Venus-real.jpg
Tierra* 1,00 1,00 1,00 1,00 1,00 1 Earth Eastern Hemisphere.jpg
Marte 0,53 0,11 1,52 1,88 1,03 2 Mars Valles Marineris.jpeg
Júpiter 11,2 318 5,20 11,86 0,414 63 Jupiter.jpg
Saturno 9,41 95 9,55 29,46 0,426 62 Saturn from Cassini Orbiter (2004-10-06).jpg
Urano 3,98 14,6 19,22 84,01 0,718 27 Uranus.jpg
Neptuno 3,81 17,2 30,06 164,79 0,6745 13 Neptune.jpg

[editar] Planetas enanos

Poco después de su descubrimiento en 1930, Plutón fue clasificado como un planeta por la Unión Astronómica Internacional (UAI). Sin embargo, basándose en descubrimientos posteriores, se abrió un debate por algunos, con objeto de reconsiderar dicha decisión. Finalmente, el 24 de agosto de 2006 la UAI decidió que el número de planetas no se ampliase a 12, como se propuso en la reunión que mantuvieron sus miembros en Praga, sino que debía reducirse de 9 a 8. El gran perjudicado de este nuevo orden cósmico fue, nuevamente, el polémico Plutón, cuyo pequeño tamaño y su evolución dinámica en el Sistema Solar llevó a los miembros de la UAI a excluirlo definitivamente de su nueva definición de planeta.
En dicha reunión de la UAI se creó una nueva clase de planeta, los planetas enanos, que a diferencia de los planetas, no han limpiado la vecindad de su órbita. Los cinco planetas enanos del Sistema Solar ordenados por proximidad al Sol son Ceres, Plutón, Haumea, Makemake y Eris.

[editar] Características principales de los planetas enanos del Sistema Solar

Los datos se expresan en relación a la Tierra.
Planeta enano Diámetro
medio
Diámetro
Km
Masa Radio
orbital(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Satélites naturales Imagen
Ceres 0,074 952,4 0,00016 2,766 4,599 0,3781 0 Ceres optimized.jpg
Plutón 0,22 2302 0,82 39,482 247,92 -6,3872 3 Pluto system 2006 es.jpg
Haumea 0,09
0,0007 43,335 285,4 0,167 2 2003EL61art.jpg
Makemake 0,12
0,0007 45,792 309,9  ? 0 2005FY9art.jpg
Eris 0,19 2398 0,0028 67,668 557  ? 1 2003 UB313 NASA illustration.jpg

[editar] Cuerpos menores del sistema solar

Entre los cuerpos menores, los planetas menores son cuerpos con masa suficiente para redondear sus superficies. Antes del descubrimiento de Caronte y los primeros objetos transneptunianos el término "planeta menor" era un sinónimo de asteroide. Sin embargo, el término asteroide suele reservarse para los cuerpos rocosos pequeños del Sistema Solar interior. La mayoría de los objetos transneptunianos son cuerpos helados, como cometas, aunque la mayoría de los que es posible descubrir a esas distancias son mucho mayores que los cometas.
Los mayores objetos transneptunianos son mucho mayores que los mayores asteroides. Los satélites naturales de los planetas mayores también tienen un amplio rango de tamaños y superficies, siendo los mayores de ellos mucho mayores que los asteroides mayores.
La siguiente tabla muestra las características más importantes de los principales cuerpos menores del Sistema Solar algunos de los cuales en un futuro podrían ser "ascendidos" al rango de planeta enano, como pasó con Makemake y Haumea. Todas las características se dan con respecto a la Tierra.
Planetas menores o planetoides.
Planetas menores Diámetro
ecuatorial
Masa Radio orbital
(UA)
Periodo orbital
(años)
Periodo
de rotación
(días)
Imagen
(90482) Orcus 0,066 - 0,148 0,000 10 - 0,001 17 39,47 248  ? Orcus art.png
(28978) Ixión ~0,083 0,000 10 - 0,000 21 39,49 248  ? Ixion orbit.png
(55636) 2002 TX300 0,0745  ? 43,102 283  ?
(20000) Varuna 0,066 - 0,097 0,000 05 - 0,000 33 43,129 283 0,132 o 0,264 Varuna artistic.png
(50000) Quaoar 0,078 - 0,106 0,000 17 - 0,000 44 43,376 285  ? Quaoar PRC2002-17e.jpg
(90377) Sedna 0,093 - 0,141 0,000 14 - 0,001 02 502,040 11500 20 Ssc2004-05b.jpg

[editar] Análisis y composición de los planetas del Sistema Solar


Planetas internos Planetas externos

Mercurio Venus Tierra Marte Júpiter Saturno Urano Neptuno
diámetro (km) 4.878 12.100 12.756 6.787 142.984 120.536 51.108 49.538
Distancia medías al sol (1UA= 149.600.000 km) 0,39 UA 0,72 UA 1 UA 1,52 UA 5,2 UA 9,54 UA 19,19 UA 30,06 UA
Periodo de rotacion 58,6 días 243 días 23,9 horas 24,6 horas 9,8 horas 10,6 horas 17,2 horas 16 horas
Periodo de revolución 87,9 días 224,7 días 365,2 días 686,9 días 11,8 años 29,4 años 84 años 164,8 años
Inclinación de órbita (en relación con la eclíptica) 7,0° 3,4° 0,0° 1,9° 1,3° 2,5° 0,8° 1,8°
Masa (en relación con la Tierra) 0,056 0,82 1 (5,9 x 1024 kg) 0,11 318 95 15 17
Núm. de satélites conocidos 0 0 1 2 17 22 21 8
Composición de la atmósfera Trazas de hidrógeno y helio 96% CO2, 3% nitrógeno,0.1% agua 78% nitrógeno, 21%oxigeno, 1% argón 95% CO2, 1.6% argón, 3% nitrógeno 90% hidrógeno, 10% helio, trazas de metano 96% hidrógeno, 3% helio, 0.5% metano 84% hidrógeno, 14% helio, 2% metano 74% hidrógeno, 25% helio, 1% metano

[editar] Formación y evolución del Sistema Solar

Concepción artística de un disco protoplanetario.
Se da generalmente como precisa la formación del Sistema Solar hace unos 4.500 millones de años a partir de una nube de gas y de polvo que formó la estrella central y un disco circumestelar en el que, por la unión de las partículas más pequeñas, primero se habrían ido formando, poco a poco, partículas más grandes, posteriormente planetesimales, y luego protoplanetas hasta llegar a los actuales planetas.
Véase también: Nebulosa protosolar

[editar] Investigación y exploración del Sistema Solar

Dada la perspectiva geocéntrica con la que es percibido el Sistema Solar por los humanos, su naturaleza y estructura fueron durante mucho tiempo desconocidos. Los movimientos aparentes de los objetos del Sistema Solar, observados desde la Tierra, se consideraban los movimientos reales de estos objetos alrededor de una Tierra estacionaria. Gran parte de los objetos del Sistema Solar no son observables sin la ayuda de instrumentos como el telescopio. Con la invención de éste comienza una era de descubrimientos (satélites galileanos; fases de Venus) en la que se abandona finalmente el sistema geocéntrico sustituyéndolo definitivamente por la visión copernicana del sistema heliocéntrico.
En la actualidad el Sistema Solar es estudiado por telescopios terrestres, observatorios espaciales y misiones espaciales capaces de llegar hasta algunos de estos distantes mundos. Los cuerpos del Sistema Solar en los que se han posado sondas espaciales terrestres son Venus, la Luna, Marte, Júpiter y Titán. Todos los cuerpos mayores han sido visitados por misiones espaciales, incluyendo algunos cometas, como el Halley, y excluyendo Plutón.

La Cadena Alimenticia
Fig.1
Observa la Figura 1 : Relaciona, Compara y Marca la Respuesta Correcta.

1.-HAY MAYOR VARIEDAD DE VEGETALES EN EL:
a) DESIERTO b) VALLE c) PUNA d) ESTANQUE
2.-EN UNA AREA DETERMINADA DONDE HABITAN 1540 VICUÑAS, EN UN AÑO NACIERON 385 VICUÑAS Y MURIERON 77 ¿CUÁL ES EL PORCENTAJE DE NATALIDAD Y CUAL DE MORTALIDAD?
A- a) 34% b) 20% c) 25% d) 30%
B- a) 10% b) 3% c) 8% d) 5%

3.-EL OXIGENO ELEMENTO DEL AIRE SE ENCUENTRA EN MAYOR PORCENTAJE EN:
a) CHOSICA b) HUASCARAN c) PUCUSANA d) CUSCO
4.-EL CONDOR SE ALIMENTA DE:
a) AVES b) REPTILES c) PLANTAS d) ANIMALES MUERTOS
I.-CADENA ALIMENTICIA:
En la naturaleza los seres vivos se encuentran íntimamente correlacionados en lo referente a la búsqueda de alimentos, protección y reproducción. En los animales existe competencia por el alimento y muchos deben cuidarse de no ser devorados. En cambio entre las plantas solo necesitan de agua, luz, suelo rico en minerales y aire. Es por eso que el equilibrio existente en el medio ambiente está en las relaciones alimenticias. Los alimentos pasan de un ser a otro en una serie de actividades reiteradas de comer y ser comido. Lo cual es en síntesis la cadena alimenticia que tiene como máximo cuatro o cinco eslabones.
El equilibrio natural es la interdependencia total de los seres vivos entre sí y con el medio que lo rodea. El hombre forma parte de este equilibrio y no puede independizarse del él. La cadena alimenticia es el continuo proceso del paso de alimentos de un ser a otro al comer y ser comido.
La base de la cadena es el mundo inorgánico constituido por: suelo, agua, aire y energía solar.
II.- ESLABONES DE LA CADENA ALIMENTICIA. (Fig.1)
Primer Eslabón .- Lo constituyen las plantas verdes que producen alimentos mediante la fotosíntesis, por producir los alimentos que pasarán luego a través de toda cadena, las plantas reciben el nombre de PRODUCTORES.

Segundo Eslabón.-
Lo constituyen los animales herbívoros llamados consumidores de primer orden. Estos dependen de los productores por que se alimentan de plantas, toman la energía solar acumulada en forma de celulosa, azúcar, almidón, etc. Para poder vivir entre los herbívoros tenemos: los ratones, la vicuña, la taruca, los venados, muchos peces, aves (arroceros, palomas, fruteros etc.)

Tercer Eslabón.-
Lo conforman los Carnívoros, llamados consumidores de segundo orden, que utilizan a los herbívoros como alimento, obteniendo la energía solar de tercera mano. Entre los carnívoros están: los lobos marinos, el puma, el zorro, la boa, el bonito. Cualquier animal que consume carne es un carnívoro, aún los más pequeños como la libélula, la araña y el alacrán. Los carnívoros reciben también el nombre de depredadores y los animales de los que se alimentan se denominan su presa. El puma es depredador de venados y vicuñas que son sus presas.

Cuarto Eslabón.-
Lo conforman los Carroñeros también se les consideran Consumidores de tercer orden que se alimentan de animales muertos y el de los carnívoros que se alimentan de otros carnívoros así el gallinazo y el cóndor son carroñeros. El puma se puede alimentar de herbívoros pero también puede cazar zorros; alimentándose en éste caso de un carnívoro, el zorro puede alimentarse de herbívoros (ratones) o de carnívoros (culebras y lagartijas) otros seres como el hombre, el cerdo, sajino se alimentan de plantas y carnes a estos se les denomina Omnívoros .Esta relación de dependencia mutua entre las plantas y los animales se puede representar en forma de una Pirámide, la base es el mundo inorgánico. (Fig. 2)

Organismos Desintegradores o Descomponedores.-
Lo constituyen los Saprofitos (hongos y bacterias) encargados de sintetizar las sustancias orgánicas muertas de origen vegetal o animal. Absorben ciertos productos y liberan el resto que se incorporan al medio abiótico para ser tomado por los organismos productores. Ejemplo así el fitoplancton (productor) mediante la fotosíntesis transforma la energía radiante de la luz solar en energía química, estos sirven de alimento al zooplancton (consumidor de primer orden) que a su vez es devorado por la anchoveta (consumidor de tercer orden) al morir dichas aves, los organismos desintegradores regresan al mar los elementos necesarios que han de servir como nutrimento al fitoplancton.
Pirámide Alimenticia.
(Fig. 2)
Observa el dibujo 2, Relaciona, Compara y Marca la Respuesta Correcta.

l.- LAS NUBES SE FORMAN POR EL FENÓMENO DE:
a) CONDENSACIÓN b) SUBLIMACIÓN c) EVAPORACIÓN d) LICUACIÓN
2.- QUE UNIDAD UTILIZARÍAS PARA MEDIR LOS CAMPOS DE CULTIVO:
a) METRO CÚBICO b)METRO LINEAL c) YARDAS d) METRO CUADRADO
3.-LOS ANIMALES QUE SE DESPLAZAN A GRANDES DISTANCIAS EN BUSCA DE SUS ALIMENTOS SON:
a) CÓNDORES b) PUMAS c) VICUÑAS d) BOAS
4.- EN LAS ALTURAS EL ELEMENTO DEL AIRE QUE SE ENCUENTRA MUY ENRARECIDO ES EL:
a) NITRÓGENO b) OXIGENO c) CARBONO d)HIDRÓGENO
III.- EL NEXO ALIMENTICIO.- Las cadenas alimenticias no son series aisladas sino que están conectadas entre sí. Veamos un ejemplo, una cadena simple sería lo siguiente.

Hierba -> Ratón -> Zorro -> Gallinazo.

Sin embargo el ratón no se alimenta de una sola planta, ni el zorro solo de ratones, tampoco la planta solo es comido por ratones sino también por orugas de mariposas, vicuñas, tarucas, guanacos, alpacas, vacas, caballos etc. etc. Al conectar todas esos datos entre sí ya no obtenemos una cadena, sino una red alimenticia o nexo alimenticio.
III.- EL NEXO ALIMENTICIO.- Las cadenas alimenticias no son series aisladas sino que están conectadas entre sí. Veamos un ejemplo, una cadena simple sería lo siguiente.

Hierba -> Ratón -> Zorro -> Gallinazo.
Sin embargo el ratón no se alimenta de una sola planta, ni el zorro solo de ratones, tampoco la planta solo es comido por ratones sino también por orugas de mariposas, vicuñas, tarucas, guanacos, alpacas, vacas, caballos etc. etc. Al conectar todas esos datos entre sí ya no obtenemos una cadena, sino una red alimenticia o nexo alimenticio.
IV.-LA ENERGÍA EN LA CADENA ALIMENTICIA.- En cada traspaso de los alimentos de un eslabón a otro de la cadena, se pierde una gran proporción de energía (80 a 90%) en forma de calor. Por lo tanto el número de eslabones es limitado, cuando más corta es la cadena de alimentos; es decir cuanto más cerca está el organismo del principio de la cadena, tanto mayor es la energía disponible; existe un continuo fluir de energía capturada por las plantas hacia los consumidores del primer y segundo orden, se establece así una relación de dependencia entre las plantas, los animales.

La energía radiante del sol capturada por las planteas con clorofila y transformada en energía química de alimento es tomada por los animales herbívoros y éstos sirven de presa a los depredadores o carnívoros y éstos a otros depredadores. Al morir sus restos alimentan a los carroñeros y finalmente los organismos desintegradores descomponen las moléculas orgánicas, se alimentan de una parte y liberan el resto al medio ambiente. En cada uno de estos niveles el flujo de energía de un organismo a otro es cada vez menor por que se pierde durante la respiración y en forma de calor. Este flujo se realiza en un solo sentido. Este flujo de energía debe existir un equilibrio entre los organismos productores y consumidores por ejemplo sí aumentan los carnívoros destruyen a los herbívoros lo que puede ocasionar la muerte de los carnívoros por falta de alimentos. Si por el contrario se destruye a los carnívoros, los animales herbívoros aumentan pero destruyen la vegetación, lo que también puede ocasionar su muerte.

No hay comentarios:

Publicar un comentario